ZippyVendas

Python

O SDK oficial Python para ZippyVendas permite que você execute workflows programaticamente de suas aplicações Python usando o SDK oficial Python.

O SDK Python suporta Python 3.8+ com suporte a execução assíncrona, limitação de taxa automática com backoff exponencial e rastreamento de uso.

Instalação

Instale o SDK usando pip:

pip install simstudio-sdk

Início Rápido

Aqui está um exemplo simples para começar:

from simstudio import SimStudioClient

# Initialize the client
client = SimStudioClient(
    api_key="your-api-key-here",
    base_url="https://zippyvendas.com"  # optional, defaults to https://zippyvendas.com
)

# Execute a workflow
try:
    result = client.execute_workflow("workflow-id")
    print("Workflow executed successfully:", result)
except Exception as error:
    print("Workflow execution failed:", error)

Referência da API

SimStudioClient

Construtor

SimStudioClient(api_key: str, base_url: str = "https://zippyvendas.com")

Parâmetros:

  • api_key (str): Sua chave de API ZippyVendas
  • base_url (str, opcional): URL base para a API ZippyVendas

Métodos

execute_workflow()

Executa um workflow com dados de entrada opcionais.

result = client.execute_workflow(
    "workflow-id",
    input_data={"message": "Hello, world!"},
    timeout=30.0  # 30 seconds
)

Parâmetros:

  • workflow_id (str): O ID do workflow a ser executado
  • input_data (dict, opcional): Dados de entrada para passar ao workflow
  • timeout (float, opcional): Tempo limite em segundos (padrão: 30.0)
  • stream (bool, opcional): Habilita respostas em streaming (padrão: False)
  • selected_outputs (list[str], opcional): Saídas de blocos para transmitir no formato blockName.attribute (ex: ["agent1.content"])
  • async_execution (bool, opcional): Executa de forma assíncrona (padrão: False)

Retorna: WorkflowExecutionResult | AsyncExecutionResult

Quando async_execution=True, retorna imediatamente com um ID de tarefa para polling. Caso contrário, aguarda a conclusão.

get_workflow_status()

Obtém o status de um workflow (status de deployment, etc.).

status = client.get_workflow_status("workflow-id")
print("Is deployed:", status.is_deployed)

Parâmetros:

  • workflow_id (str): O ID do workflow

Retorna: WorkflowStatus

validate_workflow()

Valida se um workflow está pronto para execução.

is_ready = client.validate_workflow("workflow-id")
if is_ready:
    # Workflow is deployed and ready
    pass

Parâmetros:

  • workflow_id (str): O ID do workflow

Retorna: bool

get_job_status()

Obtém o status de uma execução de trabalho assíncrono.

status = client.get_job_status("task-id-from-async-execution")
print("Status:", status["status"])  # 'queued', 'processing', 'completed', 'failed'
if status["status"] == "completed":
    print("Output:", status["output"])

Parâmetros:

  • task_id (str): O ID da tarefa retornado da execução assíncrona

Retorna: Dict[str, Any]

Campos da resposta:

  • success (bool): Se a requisição foi bem-sucedida
  • taskId (str): O ID da tarefa
  • status (str): Um de 'queued', 'processing', 'completed', 'failed', 'cancelled'
  • metadata (dict): Contém startedAt, completedAt, e duration
  • output (any, opcional): A saída do workflow (quando concluído)
  • error (any, opcional): Detalhes do erro (quando falha)
  • estimatedDuration (int, opcional): Duração estimada em milissegundos (quando processando/enfileirado)
execute_with_retry()

Executa um workflow com tentativa automática em erros de limite de taxa usando backoff exponencial.

result = client.execute_with_retry(
    "workflow-id",
    input_data={"message": "Hello"},
    timeout=30.0,
    max_retries=3,           # Maximum number of retries
    initial_delay=1.0,       # Initial delay in seconds
    max_delay=30.0,          # Maximum delay in seconds
    backoff_multiplier=2.0   # Exponential backoff multiplier
)

Parâmetros:

  • workflow_id (str): O ID do workflow a ser executado
  • input_data (dict, opcional): Dados de entrada para passar ao workflow
  • timeout (float, opcional): Tempo limite em segundos
  • stream (bool, opcional): Habilita respostas em streaming
  • selected_outputs (list, opcional): Saídas de blocos para transmitir
  • async_execution (bool, opcional): Executa de forma assíncrona
  • max_retries (int, opcional): Número máximo de tentativas (padrão: 3)
  • initial_delay (float, opcional): Atraso inicial em segundos (padrão: 1.0)
  • max_delay (float, opcional): Atraso máximo em segundos (padrão: 30.0)
  • backoff_multiplier (float, opcional): Multiplicador de backoff (padrão: 2.0)

Retorna: WorkflowExecutionResult | AsyncExecutionResult

A lógica de tentativa usa backoff exponencial (1s → 2s → 4s → 8s...) com ±25% de jitter para prevenir thundering herd. Se a API fornecer um cabeçalho retry-after, ele será usado em vez disso.

get_rate_limit_info()

Obtém as informações atuais de limite de taxa da última resposta da API.

rate_limit_info = client.get_rate_limit_info()
if rate_limit_info:
    print("Limit:", rate_limit_info.limit)
    print("Remaining:", rate_limit_info.remaining)
    print("Reset:", datetime.fromtimestamp(rate_limit_info.reset))

Retorna: RateLimitInfo | None

get_usage_limits()

Obtém os limites de uso atuais e informações de cota para sua conta.

limits = client.get_usage_limits()
print("Sync requests remaining:", limits.rate_limit["sync"]["remaining"])
print("Async requests remaining:", limits.rate_limit["async"]["remaining"])
print("Current period cost:", limits.usage["currentPeriodCost"])
print("Plan:", limits.usage["plan"])

Retorna: UsageLimits

Estrutura da resposta:

{
    "success": bool,
    "rateLimit": {
        "sync": {
            "isLimited": bool,
            "limit": int,
            "remaining": int,
            "resetAt": str
        },
        "async": {
            "isLimited": bool,
            "limit": int,
            "remaining": int,
            "resetAt": str
        },
        "authType": str  # 'api' or 'manual'
    },
    "usage": {
        "currentPeriodCost": float,
        "limit": float,
        "plan": str  # e.g., 'free', 'pro'
    }
}
set_api_key()

Atualiza a chave de API.

client.set_api_key("new-api-key")
set_base_url()

Atualiza a URL base.

client.set_base_url("https://my-custom-domain.com")
close()

Fecha a sessão HTTP subjacente.

client.close()

Classes de Dados

WorkflowExecutionResult

@dataclass
class WorkflowExecutionResult:
    success: bool
    output: Optional[Any] = None
    error: Optional[str] = None
    logs: Optional[List[Any]] = None
    metadata: Optional[Dict[str, Any]] = None
    trace_spans: Optional[List[Any]] = None
    total_duration: Optional[float] = None

AsyncExecutionResult

@dataclass
class AsyncExecutionResult:
    success: bool
    task_id: str
    status: str  # 'queued'
    created_at: str
    links: Dict[str, str]  # e.g., {"status": "/api/jobs/{taskId}"}

WorkflowStatus

@dataclass
class WorkflowStatus:
    is_deployed: bool
    deployed_at: Optional[str] = None
    needs_redeployment: bool = False

RateLimitInfo

@dataclass
class RateLimitInfo:
    limit: int
    remaining: int
    reset: int
    retry_after: Optional[int] = None

UsageLimits

@dataclass
class UsageLimits:
    success: bool
    rate_limit: Dict[str, Any]
    usage: Dict[str, Any]

SimStudioError

class SimStudioError(Exception):
    def __init__(self, message: str, code: Optional[str] = None, status: Optional[int] = None):
        super().__init__(message)
        self.code = code
        self.status = status

Códigos de erro comuns:

  • UNAUTHORIZED: Chave de API inválida
  • TIMEOUT: Requisição expirou
  • RATE_LIMIT_EXCEEDED: Limite de taxa excedido
  • USAGE_LIMIT_EXCEEDED: Limite de uso excedido
  • EXECUTION_ERROR: Execução do workflow falhou

Exemplos

Execução Básica de Workflow

Configure o SimStudioClient com sua chave de API.

Verifique se o workflow está implantado e pronto para execução.

Execute o workflow com seus dados de entrada.

Processe o resultado da execução e trate quaisquer erros.

import os
from simstudio import SimStudioClient

client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))

def run_workflow():
    try:
        # Check if workflow is ready
        is_ready = client.validate_workflow("my-workflow-id")
        if not is_ready:
            raise Exception("Workflow is not deployed or ready")

        # Execute the workflow
        result = client.execute_workflow(
            "my-workflow-id",
            input_data={
                "message": "Process this data",
                "user_id": "12345"
            }
        )

        if result.success:
            print("Output:", result.output)
            print("Duration:", result.metadata.get("duration") if result.metadata else None)
        else:
            print("Workflow failed:", result.error)
            
    except Exception as error:
        print("Error:", error)

run_workflow()

Tratamento de Erros

Trate diferentes tipos de erros que podem ocorrer durante a execução do workflow:

from simstudio import SimStudioClient, SimStudioError
import os

client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))

def execute_with_error_handling():
    try:
        result = client.execute_workflow("workflow-id")
        return result
    except SimStudioError as error:
        if error.code == "UNAUTHORIZED":
            print("Invalid API key")
        elif error.code == "TIMEOUT":
            print("Workflow execution timed out")
        elif error.code == "USAGE_LIMIT_EXCEEDED":
            print("Usage limit exceeded")
        elif error.code == "INVALID_JSON":
            print("Invalid JSON in request body")
        else:
            print(f"Workflow error: {error}")
        raise
    except Exception as error:
        print(f"Unexpected error: {error}")
        raise

Uso de Context Manager

Use o cliente como um context manager para automaticamente lidar com limpeza de recursos:

from simstudio import SimStudioClient
import os

# Using context manager to automatically close the session
with SimStudioClient(api_key=os.getenv("SIM_API_KEY")) as client:
    result = client.execute_workflow("workflow-id")
    print("Result:", result)
# Session is automatically closed here

Execução em Lote de Workflows

Execute múltiplos workflows de forma eficiente:

from simstudio import SimStudioClient
import os

client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))   

def execute_workflows_batch(workflow_data_pairs):
    """Executa múltiplos workflows com diferentes dados de entrada."""
    results = []
    
    for workflow_id, input_data in workflow_data_pairs:
        try:
            # Validate workflow before execution
            if not client.validate_workflow(workflow_id):
                print(f"Skipping {workflow_id}: not deployed")
                continue
                
            result = client.execute_workflow(workflow_id, input_data)
            results.append({
                "workflow_id": workflow_id,
                "success": result.success,
                "output": result.output,
                "error": result.error
            })
            
        except Exception as error:
            results.append({
                "workflow_id": workflow_id,
                "success": False,
                "error": str(error)
            })
    
    return results

# Example usage
workflows = [
    ("workflow-1", {"type": "analysis", "data": "sample1"}),
    ("workflow-2", {"type": "processing", "data": "sample2"}),
]

results = execute_workflows_batch(workflows)
for result in results:
    print(f"Workflow {result['workflow_id']}: {'Success' if result['success'] else 'Failed'}")

Execução Assíncrona de Workflow

Execute workflows de forma assíncrona para tarefas de longa duração:

import os
import time
from simstudio import SimStudioClient

client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))

def execute_async():
    try:
        # Start async execution
        result = client.execute_workflow(
            "workflow-id",
            input_data={"data": "large dataset"},
            async_execution=True  # Execute asynchronously
        )

        # Check if result is an async execution
        if hasattr(result, 'task_id'):
            print(f"Task ID: {result.task_id}")
            print(f"Status endpoint: {result.links['status']}")

            # Poll for completion
            status = client.get_job_status(result.task_id)

            while status["status"] in ["queued", "processing"]:
                print(f"Current status: {status['status']}")
                time.sleep(2)  # Wait 2 seconds
                status = client.get_job_status(result.task_id)

            if status["status"] == "completed":
                print("Workflow completed!")
                print(f"Output: {status['output']}")
                print(f"Duration: {status['metadata']['duration']}")
            else:
                print(f"Workflow failed: {status['error']}")

    except Exception as error:
        print(f"Error: {error}")

execute_async()

Limitação de Taxa e Tentativas

Trate limites de taxa automaticamente com backoff exponencial:

import os
from simstudio import SimStudioClient, SimStudioError

client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))

def execute_with_retry_handling():
    try:
        # Automatically retries on rate limit
        result = client.execute_with_retry(
            "workflow-id",
            input_data={"message": "Process this"},
            max_retries=5,
            initial_delay=1.0,
            max_delay=60.0,
            backoff_multiplier=2.0
        )

        print(f"Success: {result}")
    except SimStudioError as error:
        if error.code == "RATE_LIMIT_EXCEEDED":
            print("Rate limit exceeded after all retries")

            # Check rate limit info
            rate_limit_info = client.get_rate_limit_info()
            if rate_limit_info:
                from datetime import datetime
                reset_time = datetime.fromtimestamp(rate_limit_info.reset)
                print(f"Rate limit resets at: {reset_time}")

execute_with_retry_handling()

Monitoramento de Uso

Monitore o uso e limites da sua conta:

import os
from simstudio import SimStudioClient

client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))

def check_usage():
    try:
        limits = client.get_usage_limits()

        print("=== Rate Limits ===")
        print("Sync requests:")
        print(f"  Limit: {limits.rate_limit['sync']['limit']}")
        print(f"  Remaining: {limits.rate_limit['sync']['remaining']}")
        print(f"  Resets at: {limits.rate_limit['sync']['resetAt']}")
        print(f"  Is limited: {limits.rate_limit['sync']['isLimited']}")

        print("\nAsync requests:")
        print(f"  Limit: {limits.rate_limit['async']['limit']}")
        print(f"  Remaining: {limits.rate_limit['async']['remaining']}")
        print(f"  Resets at: {limits.rate_limit['async']['resetAt']}")
        print(f"  Is limited: {limits.rate_limit['async']['isLimited']}")

        print("\n=== Usage ===")
        print(f"Current period cost: ${limits.usage['currentPeriodCost']:.2f}")
        print(f"Limit: ${limits.usage['limit']:.2f}")
        print(f"Plan: {limits.usage['plan']}")

        percent_used = (limits.usage['currentPeriodCost'] / limits.usage['limit']) * 100
        print(f"Usage: {percent_used:.1f}%")

        if percent_used > 80:
            print("⚠️  Warning: You are approaching your usage limit!")

    except Exception as error:
        print(f"Error checking usage: {error}")

check_usage()

Execução de Workflow com Streaming

Execute workflows com respostas em streaming em tempo real:

from simstudio import SimStudioClient
import os

client = SimStudioClient(api_key=os.getenv("SIM_API_KEY"))

def execute_with_streaming():
    """Executa workflow com streaming habilitado."""
    try:
        # Enable streaming for specific block outputs
        result = client.execute_workflow(
            "workflow-id",
            input_data={"message": "Count to five"},
            stream=True,
            selected_outputs=["agent1.content"]  # Use blockName.attribute format
        )

        print("Workflow result:", result)
    except Exception as error:
        print("Error:", error)

execute_with_streaming()

A resposta em streaming segue o formato Server-Sent Events (SSE):

data: {"blockId":"7b7735b9-19e5-4bd6-818b-46aae2596e9f","chunk":"One"}

data: {"blockId":"7b7735b9-19e5-4bd6-818b-46aae2596e9f","chunk":", two"}

data: {"event":"done","success":true,"output":{},"metadata":{"duration":610}}

data: [DONE]

Exemplo de Streaming com Flask:

from flask import Flask, Response, stream_with_context
import requests
import json
import os

app = Flask(__name__)

@app.route('/stream-workflow')
def stream_workflow():
    """Transmite a execução do workflow para o cliente."""

    def generate():
        response = requests.post(
            'https://zippyvendas.com/api/workflows/WORKFLOW_ID/execute',
            headers={
                'Content-Type': 'application/json',
                'X-API-Key': os.getenv('SIM_API_KEY')
            },
            json={
                'message': 'Generate a story',
                'stream': True,
                'selectedOutputs': ['agent1.content']
            },
            stream=True
        )

        for line in response.iter_lines():
            if line:
                decoded_line = line.decode('utf-8')
                if decoded_line.startswith('data: '):
                    data = decoded_line[6:]  # Remove 'data: ' prefix

                    if data == '[DONE]':
                        break

                    try:
                        parsed = json.loads(data)
                        if 'chunk' in parsed:
                            yield f"data: {json.dumps(parsed)}\n\n"
                        elif parsed.get('event') == 'done':
                            yield f"data: {json.dumps(parsed)}\n\n"
                            print("Execution complete:", parsed.get('metadata'))
                    except json.JSONDecodeError:
                        pass

    return Response(
        stream_with_context(generate()),
        mimetype='text/event-stream'
    )

if __name__ == '__main__':
    app.run(debug=True)

Configuração de Ambiente

Configure o cliente usando variáveis de ambiente:

import os
from simstudio import SimStudioClient

# Development configuration
client = SimStudioClient(
    api_key=os.getenv("SIM_API_KEY")
    base_url=os.getenv("SIM_BASE_URL", "https://zippyvendas.com")
)
import os
from simstudio import SimStudioClient

# Production configuration with error handling
api_key = os.getenv("SIM_API_KEY")
if not api_key:
    raise ValueError("SIM_API_KEY environment variable is required")

client = SimStudioClient(
    api_key=api_key,
    base_url=os.getenv("SIM_BASE_URL", "https://zippyvendas.com")
)

Obtendo Sua Chave de API

Navegue até ZippyVendas e faça login na sua conta.

Navegue até o workflow que você deseja executar programaticamente.

Clique em "Deploy" para implantar seu workflow se ele ainda não foi implantado.

Durante o processo de implantação, selecione ou crie uma chave de API.

Copie a chave de API para usar em sua aplicação Python.

Requisitos

  • Python 3.8+
  • requests >= 2.25.0

Licença

Apache-2.0

On this page

On this page

Comece a automatizar hoje
Confiado por empresas em todo o Brasil.
Crie fluxos de automação de vendas com IA no WhatsApp de forma visual e intuitiva.
Começar grátis